On a map, \(1 \mathrm{~cm}\) represents \(5 \mathrm{~km}\). Then it follows that \(1 \mathrm{~cm}^{2}\) represents \(25 \mathrm{~km}^{2}\).
Acm² represents \(100 \mathrm{~km}^{2}\). By apparent cross-multiplication, \(1 \mathrm{~cm}^{2} \times 100 \mathrm{~km}^{2}=\mathrm{Acm}^{2} \mathrm{x}\) \(25 \mathrm{~km}^{2}\)
therefore \(A=\frac{100}{25}=4 \mathrm{~cm}^{2}\)