# arrow_back Given that $\int_{-\infty}^{\infty} \frac{e^{x}}{e^{2 x}-e^{-2 x}} d x$ is an improper integral, its convergence and its value can be found by considering

53 views
Given that $\int_{-\infty}^{\infty} \frac{e^{x}}{e^{2 x}-e^{-2 x}} d x$ is an improper integral, its convergence and its value can be found by considering

A. $\lim _{t \rightarrow \infty} \int_{-t}^{t} \frac{e^{x}}{e^{2 x}-e^{-2 x}} d x$

B. $\lim _{t \rightarrow \infty} \int_{-t}^{2 t} \frac{e^{x}}{e^{2 x}-e^{-2 x}} d x$

C. $\lim _{t \rightarrow \infty} \int_{0}^{t}\left[\frac{e^{x}}{e^{2 x}-e^{-2 x}}-\frac{e^{-x}}{e^{2 x}-e^{-2 x}}\right] d x$

D. $\lim _{t \rightarrow \infty} \int_{0}^{t}\left[\frac{e^{x}}{e^{2 x}-e^{-2 x}}+\frac{e^{-x}}{e^{2 x}-e^{-2 x}}\right] d x$

E. $\lim _{t \rightarrow-\infty} \int_{t}^{1} \frac{e^{x}}{e^{2 x}-e^{-2 x}} d x$ and $\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{e^{x}}{e^{2 x}-e^{-2 x}} d x$

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Determine whether the improper integral $$\int_{1}^{\infty} \frac{\ln x}{(x+1)^{2}} d x$$ converges or diverges. If it converges, find its value.
Determine whether the improper integral $$\int_{1}^{\infty} \frac{\ln x}{(x+1)^{2}} d x$$ converges or diverges. If it converges, find its value.Determine whether the improper integral $$\int_{1}^{\infty} \frac{\ln x}{(x+1)^{2}} d x$$ converges or diverges. If it converges, find its value. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Explain when an integral is called improper.
Explain when an integral is called improper.Explain when an integral is called improper. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
The derivative with respect to $x$ of $\int_{\frac{\pi}{7}}^{x} e^{t^{2}} \operatorname{cosec}(t) d t$ is
The derivative with respect to $x$ of $\int_{\frac{\pi}{7}}^{x} e^{t^{2}} \operatorname{cosec}(t) d t$ isThe derivative with respect to $x$ of $\int_{\frac{\pi}{7}}^{x} e^{t^{2}} \operatorname{cosec}(t) d t$ is &nbsp; A) $e^{x^{2}} \operatorname{cosec}( ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Determine whether the integral$\int_{3}^{3+e} \ln (x-3) d x$is convergent or divergent. If convergent, give the value the integral converges to. 0 answers 47 views Determine whether the integral$\int_{3}^{3+e} \ln (x-3) d x$is convergent or divergent. If convergent, give the value the integral converges to. Determine whether the integral$\int_{3}^{3+e} \ln (x-3) d x$is convergent or divergent. If convergent, give the value the integral converges to. ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 What is the most suitable substitution to use to solve the integral$\int \frac{1}{\sqrt{t^{2}-81}} d t ?$0 answers 52 views What is the most suitable substitution to use to solve the integral$\int \frac{1}{\sqrt{t^{2}-81}} d t ?$What is the most suitable substitution to use to solve the integral$\int \frac{1}{\sqrt{t^{2}-81}} d t ?$&nbsp; A)$t=9 \sec \theta$. &nbsp; B) ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Determine whether the integral$\int_{0}^{1} \dfrac{1}{\left(1+x^{2}\right) \arctan x} d x$is convergent or divergent. 0 answers 82 views Determine whether the integral$\int_{0}^{1} \dfrac{1}{\left(1+x^{2}\right) \arctan x} d x$is convergent or divergent.Determine whether the integral$\int_{0}^{1} \dfrac{1}{\left(1+x^{2}\right) \arctan x} d x$is convergent or divergent. ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Evaluate the integral:$\int_{0}^{\pi} 2 x \cos 2 x d x$0 answers 52 views Evaluate the integral:$\int_{0}^{\pi} 2 x \cos 2 x d x$Evaluate the integral:$\int_{0}^{\pi} 2 x \cos 2 x d x$... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Evaluate$\int_{0}^{\infty} \frac{4}{x^{2}+2} d x=$0 answers 48 views Evaluate$\int_{0}^{\infty} \frac{4}{x^{2}+2} d x=$Evaluate$\int_{0}^{\infty} \frac{4}{x^{2}+2} d x=$&nbsp; A.$-\frac{\pi}{\sqrt{2}}$&nbsp; B.$\quad \sqrt{2} \pi$&nbsp; C.$\frac{\pi}{\sqrt ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Evaluate $\int_{0}^{2} \frac{3}{x^{2}-6 x+12} d x$
Evaluate $\int_{0}^{2} \frac{3}{x^{2}-6 x+12} d x$Evaluate $\int_{0}^{2} \frac{3}{x^{2}-6 x+12} d x$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
The convergence of which of the following method depends on initial assumed value?
The convergence of which of the following method depends on initial assumed value?The convergence of which of the following method depends on initial assumed value? a) False position b) Gauss Seidel method c) Newton Raphson method d ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
What is Uniform Convergence, Limits and Continuity?
What is Uniform Convergence, Limits and Continuity?What is Uniform Convergence, Limits and Continuity? ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Evaluate the integral $\int x \ln x d x$
Evaluate the integral $\int x \ln x d x$Evaluate the integral $\int x \ln x d x$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Integrate $\int x e^{x} d x$ by parts
Integrate $\int x e^{x} d x$ by partsIntegrate $\int x e^{x} d x$ by parts ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Differentiate $y=\ln{(3x^{2} e^{\tan{x}})}$ with respect to $x$
Differentiate $y=\ln{(3x^{2} e^{\tan{x}})}$ with respect to $x$Differentiate $y=\ln{(3x^{2} e^{\tan{x}})}$ with respect to $x$ ...
Evaluate the integral: $\int \dfrac{3 x+2}{\sqrt{4-3 x^{2}}} d x$
Evaluate the integral: $\int \dfrac{3 x+2}{\sqrt{4-3 x^{2}}} d x$Evaluate the integral: &nbsp;&nbsp;$\int \dfrac{3 x+2}{\sqrt{4-3 x^{2}}} d x$ ...