arrow_back Let $a, b$ and $c$ be vectors in $\mathrm{R}^{3}, \times$ denotes the cross product, . the dot product. Which of the following is false?

10 views
Let $a, b$ and $c$ be vectors in $\mathrm{R}^{3}, \times$ denotes the cross product, . the dot product. Which of the following is false?

A. $-a \times b=b \times a$

B. $(a \times b) \cdot c=a \cdot(b \times c)$

C. $a \cdot b=b \cdot a$

D. $\boldsymbol{a} \times b=\|\boldsymbol{a}\| \boldsymbol{b} \| \sin a b$

E. $\boldsymbol{a} \cdot b=\|\boldsymbol{a}\| \boldsymbol{b} \| \cos a b$

Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $a, b$ and $c$ be vectors in $\mathrm{R}^{3}$, such that $a \cdot(b \times c)=0$. Then Let $a, b$ and $c$ be vectors in $\mathrm{R}^{3}$, such that $a \cdot(b \times c)=0$. ThenLet $a, b$ and $c$ be vectors in $\mathrm{R}^{3}$, such that $a \cdot(b \times c)=0$. Then A. $a, b$ and $c$ are colinear B. $a, b$ and $c$ lie on t ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $\vec{a}$ and $\vec{b}$ be non-zero, non parallel vectors. Identify proj $\vec{a} \vec{b}$ geometrically in the diagram.
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the dot product of $u = <-5,-6,-2>$ and $v = <-3,10,8>$. Are $u$ and $v$ orthogonal?
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $A$ and $B$ are $4 \times 4$ matrices such that $\operatorname{rank}(A B)=3$, then $\operatorname{rank}(B A)<4$. If $A$ and $B$ are $4 \times 4$ matrices such that $\operatorname{rank}(A B)=3$, then $\operatorname{rank}(B A)<4$.For each of the following, answer TRUE or FALSE. If the statement is false in even a single instance, then the answer is FALSE. There is no need to ju ...
Find the negatives of (a) $u=(3,-5,-8,4)$, (b) $v=(-4,2 \pi, 0)$, (c) $0=(0,0,0,0)$.