# arrow_back Verify that the Cauchy–Schwarz inequality holds for $\mathbf{u}=(4,1,1), \mathbf{v}=(1,2,3)$

12 views
Verify that the Cauchy&ndash;Schwarz inequality holds for $\mathbf{u}=(4,1,1), \mathbf{v}=(1,2,3)$

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Verify that the Cauchy–Schwarz inequality holds for $\mathbf{u}=(1,2,1,2,3), \mathbf{v}=(0,1,1,5,-2)$
Verify that the Cauchy–Schwarz inequality holds for $\mathbf{u}=(1,2,1,2,3), \mathbf{v}=(0,1,1,5,-2)$Verify that the Cauchy&amp;ndash;Schwarz inequality holds for $\mathbf{u}=(1,2,1,2,3), \mathbf{v}=(0,1,1,5,-2)$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Verify that the Cauchy–Schwarz inequality holds for $\mathbf{u}=(0,2,2,1), \mathbf{v}=(1,1,1,1)$
Verify that the Cauchy–Schwarz inequality holds for $\mathbf{u}=(0,2,2,1), \mathbf{v}=(1,1,1,1)$Verify that the Cauchy&amp;ndash;Schwarz inequality holds for $\mathbf{u}=(0,2,2,1), \mathbf{v}=(1,1,1,1)$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Verify that the Cauchy-Schwarz inequality holds. (a) $\mathbf{u}=(-3,1,0), \mathbf{v}=(2,-1,3)$ (b) $\mathbf{u}=(0,2,2,1), \mathbf{v}=(1,1,1,1)$
Verify that the Cauchy-Schwarz inequality holds. (a) $\mathbf{u}=(-3,1,0), \mathbf{v}=(2,-1,3)$ (b) $\mathbf{u}=(0,2,2,1), \mathbf{v}=(1,1,1,1)$Verify that the Cauchy-Schwarz inequality holds. (a) $\mathbf{u}=(-3,1,0), \mathbf{v}=(2,-1,3)$ (b) $\mathbf{u}=(0,2,2,1), \mathbf{v}=(1,1,1,1)$ ...
If $\mathbf{u}$ and $\mathbf{v}$ are orthogonal vectors in $R^{n}$ with the Euclidean inner product, then prove that $$\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$$If $\mathbf{u}$ and $\mathbf{v}$ are orthogonal vectors in $R^{n}$ with the Euclidean inner product, then prove that $$\|\mathbf{u}+\mathbf{v}\|^{2}= ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Show that two nonzero vectors \mathbf{v}_{1} and \mathbf{v}_{2} in R^{3} are orthogonal if and only if their direction cosines satisfy 0 answers 7 views Show that two nonzero vectors \mathbf{v}_{1} and \mathbf{v}_{2} in R^{3} are orthogonal if and only if their direction cosines satisfyShow that two nonzero vectors \mathbf{v}_{1} and \mathbf{v}_{2} in R^{3} are orthogonal if and only if their direction cosines satisfy$$ \cos \ ...
Let $\mathbf{r}_{0}=\left(x_{0}, y_{0}\right)$ be a fixed vector in $R^{2}$. In each part, describe in words the set of all vectors $\mathbf{r}=(x, y)$ that satisfy the stated condition.Let $\mathbf{r}_{0}=\left(x_{0}, y_{0}\right)$ be a fixed vector in $R^{2}$. In each part, describe in words the set of all vectors \$\mathbf{r}=(x, y) ...