arrow_back If A is an $n\times n$ matrix and u and v are $n\times 1$ matrices, then prove that $\boldsymbol{A u} \cdot \mathbf{v}=\mathbf{u} \cdot \boldsymbol{A}^{T} \mathbf{v}$

12 views
If A is an $n\times n$ matrix and u and v are $n\times 1$ matrices, then prove that $\boldsymbol{A u} \cdot \mathbf{v}=\mathbf{u} \cdot \boldsymbol{A}^{T} \mathbf{v}$

Suppose that $$A=\left[\begin{array}{rrr} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r} -1 \\ 2 \\ 4 \end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r} -2 \\ 0 \\ 5 \end{array}\right]$$ Then $$\begin{array}{r} A \mathbf{u}=\left[\begin{array}{rrr} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{array}\right]\left[\begin{array}{r} -1 \\ 2 \\ 4 \end{array}\right]=\left[\begin{array}{r} 7 \\ 10 \\ 5 \end{array}\right] \\ A^{T} \mathbf{v}=\left[\begin{array}{rrr} 1 & 2 & -1 \\ -2 & 4 & 0 \\ 3 & 1 & 1 \end{array}\right]\left[\begin{array}{r} -2 \\ 0 \\ 5 \end{array}\right]=\left[\begin{array}{r} -7 \\ 4 \\ -1 \end{array}\right] \end{array}$$ from which we obtain \begin{aligned} A \mathbf{u} \cdot \mathbf{v} &=7(-2)+10(0)+5(5)=11 \\ \mathbf{u} \cdot A^{T} \mathbf{v} &=(-1)(-7)+2(4)+4(-1)=11 \end{aligned}
by Platinum
(103,042 points)

Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $A$ be an $n \times n$ matrix with $I_{n}$ the identity matrix. The statement det $A \neq 0$ is equivalent to: Let $A$ be an $n \times n$ matrix with $I_{n}$ the identity matrix. The statement det $A \neq 0$ is equivalent to:Let $A$ be an $n \times n$ matrix with $I_{n}$ the identity matrix. The statement det $A \neq 0$ is equivalent to: &nbsp; A. All the given options a ...
Let $A$ and $B$ be $n \times n$ matrices. Which of the following is true? Let $A$ and $B$ be $n \times n$ matrices. Which of the following is true?Let $A$ and $B$ be $n \times n$ matrices. Which of the following is true? &nbsp; A) $\operatorname{det}(A)=\operatorname{det}(-A)$ B) $\operatornam ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 If$\mathbf{v}$is a vector in$R^{n}$, and if$k$is any scalar, then prove that$\|k \mathbf{v}\|=|k|\|\mathbf{v}\|$1 answer 8 views close 1 answer 5 views close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Let$A$and$B$be two square invertible matrices of the same order. Then$\left((A B)^{T}\right)^{-1}$is equal to 0 answers 3 views Let$A$and$B$be two square invertible matrices of the same order. Then$\left((A B)^{T}\right)^{-1}$is equal toLet$A$and$B$be two square invertible matrices of the same order. Then$\left((A B)^{T}\right)^{-1}$is equal to &nbsp; A)$\left(B^{T}\right)^{- ...