# arrow_back Determine $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\left(x^{2}+\frac{1}{x^{2}}\right)^{2}$

6 views
Determine $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if
$y=\left(x^{2}+\frac{1}{x^{2}}\right)^{2}$

## 1 Answer

Best answer

Best answer
Multiply out and simplify
We need to get $y$ into a form that we know how to differentiate.
\begin{aligned} y &=\left(x^{2}+\frac{1}{x^{2}}\right)^{2} \\ &=x^{4}+2 \frac{x^{2}}{x^{2}}+\frac{1}{x^{4}} \\ &=x^{4}+2+\frac{1}{x^{4}} \\ &=x^{4}+2+x^{-4} \end{aligned}
Differentiate the simplified expression
\begin{aligned} y &=x^{4}+2+x^{-4} \\ \therefore \frac{\mathrm{d} y}{\mathrm{~d} x} &=4 x^{3}-4 x^{-5} \end{aligned}
by Platinum
(106,962 points)

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve  $\cos x \frac{d y}{d x}=1+y \sin x$ (where $\left.-\frac{\pi}{2}<x<\frac{\pi}{2}\right)$ explicitly.
0 answers 11 views
Solve  $\cos x \frac{d y}{d x}=1+y \sin x$ (where $\left.-\frac{\pi}{2}<x<\frac{\pi}{2}\right)$ explicitly.Solve &nbsp;$\cos x \frac{d y}{d x}=1+y \sin x$ where $\left(-\frac{\pi}{2}&lt;x&lt;\frac{\pi}{2} \right)$ explicitly. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Show that $\cos x$ is the integrating factor of the linear differential equation $\cos x \frac{d y}{d x}=1+y \sin x$ where $\left(-\frac{\pi}{2}<x<\frac{\pi}{2}\right) .$
0 answers 8 views
Show that $\cos x$ is the integrating factor of the linear differential equation $\cos x \frac{d y}{d x}=1+y \sin x$ where $\left(-\frac{\pi}{2}<x<\frac{\pi}{2}\right) .$Show that $\cos x$ is the integrating factor of the linear differential equation $\cos x \frac{d y}{d x}=1+y \sin x$ where $\left(-\frac{\pi}{2}&lt;x& ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Evaluate: $\int_{1}^{3}\left(\frac{x-1}{(x+1)^{2}}\right) \mathrm{d} x$ 1 answer 46 views Evaluate: $\int_{1}^{3}\left(\frac{x-1}{(x+1)^{2}}\right) \mathrm{d} x$Evaluate: $\int_{1}^{3}\left(\frac{x-1}{(x+1)^{2}}\right) \mathrm{d} x$ ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993$\int\left(\frac{1}{x^{2}}+\frac{6}{x^{3}}\right) d x$1 answer 53 views$\int\left(\frac{1}{x^{2}}+\frac{6}{x^{3}}\right) d x$$\int\left(\frac{1}{x^{2}}+\frac{6}{x^{3}}\right) d x ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Show that \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} 1 answer 51 views Show that \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}Show that \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Determine the integral \int \left(x^{\frac{1}{3}}+\dfrac{1}{x^{\frac{3}{2}}}\right)dx 1 answer 118 views Determine the integral \int \left(x^{\frac{1}{3}}+\dfrac{1}{x^{\frac{3}{2}}}\right)dxDetermine the integral \int \left(x^{\frac{1}{3}}+\dfrac{1}{x^{\frac{3}{2}}}\right)dx ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Find the general solution for x>3. For x>3, we have$$ \frac{d y_{2}}{d x}+2 y_{2}=-2, \quad y_{2}(3)=y_{1}(3) $$1 answer 38 views Find the general solution for x>3. For x>3, we have$$ \frac{d y_{2}}{d x}+2 y_{2}=-2, \quad y_{2}(3)=y_{1}(3) $$Find the general solution for x&gt;3. For x&gt;3, we have$$ \frac{d y_{2}}{d x}+2 y_{2}=-2, \quad y_{2}(3)=y_{1}(3)  ...
close